The obstacle problem for the infinity fractional laplacian
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولGlobal Regularity for the Free Boundary in the Obstacle Problem for the Fractional Laplacian
We study the regularity of the free boundary in the obstacle problem for the fractional Laplacian under the assumption that the obstacle φ satisfies ∆φ ≤ 0 near the contact region. Our main result establishes that the free boundary consists of a set of regular points, which is known to be a (n− 1)-dimensional C manifold by the results in [7], and a set of singular points, which we prove to be c...
متن کاملOptimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift
We prove existence, uniqueness and optimal regularity of solutions to the stationary obstacle problem defined by the fractional Laplacian operator with drift, in the subcritical regime. As in [1], we localize our problem by considering a suitable extension operator introduced in [2]. The structure of the extension equation is different from the one constructed in [1], in that the obstacle funct...
متن کاملNon-local Tug-of-war and the Infinity Fractional Laplacian
Motivated by the “tug-of-war” game studied in [12], we consider a “non-local” version of the game which goes as follows: at every step two players pick respectively a direction and then, instead of flipping a coin in order to decide which direction to choose and then moving of a fixed amount > 0 (as is done in the classical case), it is a s-stable Levy process which chooses at the same time bot...
متن کاملRegularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian
We use a characterization of the fractional Laplacian as a Dirichlet to Neumann operator for an appropriate differential equation to study its obstacle problem. We write an equivalent characterization as a thin obstacle problem. In this way we are able to apply local type arguments to obtain sharp regularity estimates for the solution and study the regularity of the free boundary.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rendiconti del Circolo Matematico di Palermo Series 2
سال: 2016
ISSN: 0009-725X,1973-4409
DOI: 10.1007/s12215-016-0286-2